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Abstract. Simulations for dispersion of diffusion at the percolation threshold of triangular 
and Bethe lattices show scaling behaviour. With ‘topological’ bias we find a maximum of 
the arrival time distribution at short times, a power-law decay for intermediate times and 
an exponential decay for long times. 

If fluids flow through a porous medium, different parts of the fluid take different 
amounts of time to flow the same distance (dispersion). One model for dispersion is 
diffusion on percolating clusters [l-51, where a random walker can move only on 
occupied sites. This walk is called biased if one direction is taken more often than 
the others, This direction can be fixed in space [6], oriented away from the origin 
(‘topological’) [7], oriented along the current flow direction [8,9], or it can be random 
[ 101. The case of topological bias seems numerically and analytically best understood 
[7] and thus is chosen for the present study. 

Therefore we check how long a random walker needs to travel a ‘chemical distance’ 
1, i.e. to move to a site separated by I nearest-neighbour bonds (within the percolating 
cluster) from the origin of the walk. P ( t )  is the probability that the walker arrives 
there first after t steps. In general, a step which increases the chemical distance 1 from 
the origin is taken with a probability proportional to 1 + E ,  a step in the opposite 
direction with probability proportional to 1 -E .  This bias field ,lay correspond to 
the pressure gradient in a porous medium, if a fluid is injected at the origin. We 
simulate this dispersion problem on a computer at the critical concentration p = p c  = 
of a triangular and a Bethe lattice (Cayley tree). The random medium is produced by 
Monte Carlo methods, the diffusion process on it by exact enumeration [2]. 

Figure 1 shows that the histogram P ( t )  of first-arrival times obeys a scaling law 
even for moderately large distances 1. The R M S  fluctuation ( ( t 2 ) - ( t ) 2 ) ’  ’ is about as 
large as the average ( 1 ) .  We plot double logarithmically the ratio T (  t )  =: P (  t ) / P (  t,,,) 
against t / t , , * .  Here t,,, is the time at which P ( r )  reaches its maximum, and t,,? the 
later time after which P (  t )  has decayed to half its maximum value. This way of plotting 
avoids any assumptions on how the times depend on the length 1. The inserts in figure 
1 show that t,,, and t,,* increase roughly as I 2  on the triangular lattice and as 1’ 
on the Cayley tree. Theoretically we expect [2] these exponents to be about d :  = 2.5 
and d’, = 3  for t + w .  

We see an  impressive agreement between the triangular and Bethe lattices. For 
example, the ratio t l , 2 / t m a r  is about 3 in the triangular lattice and only 10% larger in 
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Figure 2. ( a )  Histogram P( f )  for the triangular lattice for I = 35, E = 0.8(0), and for I = 10, 
E = 0.8(0). In both cases a power-law regime of f ( 1 )  - r - '  * is seen. In the case I = 10 
the exponential decay for f > lo4 is seen clearly in ( b )  where In f(r) is plotted against 1. 
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the Bethe lattice. In  both cases the data for different 1 fall into the same curve except 
for very small T (  1 ) .  Roughly, this curve is a parabola, corresponding to a log-normal 
distribution of arrival times: 

log ~ ( t ) a  [log(tm,x) -log(t)I*. (1) 
However, a slight asymmetry is visible, and  the log-normal distribution should not be 
expected to be asymptotically exact. For example, if t + CO at fixed 1 we expect [ 111 
P (  t )  to decay exponentially, as confirmed by data on I = 10 (Cayley tree) for n( t )  < 
(not shown). The first-passage-time distribution P( t )  can be related to the distribution 
of voltage drops between the site at the origin of the walker and a site at chemical 
distance 1. Since for the voltage-drop problem an  infinite hierarchy of exponents are 
needed to characterise the different moments, it is expected that for this case an 
analogous hierarchy of exponents will characterise the moments ( t " ) .  

With a non-zero bias E the results become more complicated. The most probable 
time t,,, of arrival shifts, for strong fields ( E  + l ) ,  towards 1, which is the minimum 
time to traverse 1 bonds. For t somewhat larger than t , , , ,  the arrival probability P ( t )  
falls rapidly. If 1 is large enough (e.g., l = 3 5  but not 1 =  10) we then see a regime 
where P (  t )  decays less strongly, roughly like 1/ t .  Finally, for t + CO exponential decay 
is expected, and is seen explicitly in our longest computer run. Figure 2 summarises 
some of our data. The intermediate regime with its power-law behaviour can be 
explained as follows. It has been shown [12] that for a walker having a waiting time 
distribution 4 ( t )  - t f m  in a finite system surrounded with traps, the first-passage-time 
probability P ( t )  also scales as t - " .  This is analogous to our case. To calculate (Y we 
make use of a recent result [13] found for topological biased diffusion on percolation: 

Here Po(w)  is the distribution of transition rates w to pass a dangling end along the 
backbone of the cluster due  to the delays made by visiting in the dangling ends. From 
( 2 ) ,  and since w - t - ' ,  we find 

This result predicts P ( t )  to be proportional to l / t  with logarithmic corrections. Indeed, 
the power calculated from figure 2 is P ( r ) -  t-" which may indicate the effect of 
logarithmic corrections. The crossover to exponential decay for t + CO is also under- 
stood: since the system is finite there is a minimum cutoff for equation (21, w,,,, and, 
for t >> w;:,, P ( t )  should decay exponentially. The power-law regime might correspond 
to 1/ f noise if Fourier transforms of the current fluctuations are observed [ 10, 111. It 
would be interesting to search for similar effects in other types of bias [14, 151. 
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